Sensor fusion implemented

This commit is contained in:
Turingon 2024-06-25 12:15:23 +02:00
parent 0e76cfc25a
commit 61a5580269
6 changed files with 413 additions and 203 deletions

View file

@ -1,8 +1,24 @@
#include <Arduino.h>
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_LSM9DS1.h>
#include <Adafruit_Sensor.h> // not used in this demo but required!
#include <BLEDevice.h>
#include <BLEServer.h>
#include <BLEUtils.h>
#include <BLE2902.h>
// This part is taken from
Adafruit_LSM9DS1 lsm = Adafruit_LSM9DS1();
#define LSM9DS1_SCK A5
#define LSM9DS1_MISO 12
#define LSM9DS1_MOSI A4
#define LSM9DS1_XGCS 6
#define LSM9DS1_MCS 5
// BLE part
BLEServer* pServer = NULL;
BLECharacteristic* pSensorCharacteristic = NULL;
BLECharacteristic* pLedCharacteristic = NULL;
@ -10,15 +26,15 @@ bool deviceConnected = false;
bool oldDeviceConnected = false;
uint32_t value = 0;
const int ledPin = 2; // Use the appropriate GPIO pin for your setup
// See the following for generating UUIDs:
// https://www.uuidgenerator.net/
const int ledPin = 2; //This is the internal LED; used to demonstrate bidirectional communication
#define SERVICE_UUID "19b10000-e8f2-537e-4f6c-d104768a1214"
#define SENSOR_CHARACTERISTIC_UUID "19b10001-e8f2-537e-4f6c-d104768a1214"
#define LED_CHARACTERISTIC_UUID "19b10002-e8f2-537e-4f6c-d104768a1214"
// Will need to provide a more detailed description in your bachelor thesis, but the UUIDs
// generally describe what you use a feature for - e.g. weather data collection, computer mouse etc.
class MyServerCallbacks: public BLEServerCallbacks {
void onConnect(BLEServer* pServer) {
deviceConnected = true;
@ -46,10 +62,57 @@ class MyCharacteristicCallbacks : public BLECharacteristicCallbacks {
}
};
void setup() {
void setupSensor()
{
// 1.) Set the accelerometer range
lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_2G, lsm.LSM9DS1_ACCELDATARATE_10HZ);
//lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_4G, lsm.LSM9DS1_ACCELDATARATE_119HZ);
//lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_8G, lsm.LSM9DS1_ACCELDATARATE_476HZ);
//lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_16G, lsm.LSM9DS1_ACCELDATARATE_952HZ);
// 2.) Set the magnetometer sensitivity
lsm.setupMag(lsm.LSM9DS1_MAGGAIN_4GAUSS);
//lsm.setupMag(lsm.LSM9DS1_MAGGAIN_8GAUSS);
//lsm.setupMag(lsm.LSM9DS1_MAGGAIN_12GAUSS);
//lsm.setupMag(lsm.LSM9DS1_MAGGAIN_16GAUSS);
// 3.) Setup the gyroscope
lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
//lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_500DPS);
//lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_2000DPS);
}
void setup()
{
// General settings
Serial.begin(115200);
pinMode(ledPin, OUTPUT);
// LSM9DS1 Setup
while (!Serial) {
delay(1); // will pause Zero, Leonardo, etc until serial console opens
}
Serial.println("LSM9DS1 data read demo");
// Try to initialise and warn if we couldn't detect the chip
if (!lsm.begin())
{
Serial.println("Oops ... unable to initialize the LSM9DS1. Check your wiring!");
while (1);
}
Serial.println("Found LSM9DS1 9DOF");
// helper to just set the default scaling we want, see above!
setupSensor();
// Bluetooth part
// Create the BLE Device
BLEDevice::init("ESP32");
@ -95,12 +158,43 @@ void setup() {
Serial.println("Waiting a client connection to notify...");
}
void loop() {
void loop()
{
lsm.read(); /* ask it to read in the data */
/* Get a new sensor event */
sensors_event_t a, m, g, temp;
lsm.getEvent(&a, &m, &g, &temp);
String test_str = "Accel X: " + String(a.acceleration.x) + " m/s^2" +
"\tY: " + String(a.acceleration.y) + " m/s^2 " +
"\tZ: " + String(a.acceleration.z) + " m/s^2\n" +
"Mag X: " + String(m.magnetic.x) + " uT" +
"\tY: " + String(m.magnetic.y) + " uT" +
"\tZ: " + String(m.magnetic.z) + " uT\n" +
"Gyro X: " + String(g.gyro.x) + " rad/s" +
"\tY: " + String(g.gyro.y) + " rad/s" +
"\tZ: " + String(g.gyro.z) + " rad/s\n";
Serial.print("Accel X: "); Serial.print(a.acceleration.x); Serial.print(" m/s^2");
Serial.print("\tY: "); Serial.print(a.acceleration.y); Serial.print(" m/s^2 ");
Serial.print("\tZ: "); Serial.print(a.acceleration.z); Serial.println(" m/s^2 ");
Serial.print("Mag X: "); Serial.print(m.magnetic.x); Serial.print(" uT");
Serial.print("\tY: "); Serial.print(m.magnetic.y); Serial.print(" uT");
Serial.print("\tZ: "); Serial.print(m.magnetic.z); Serial.println(" uT");
Serial.print("Gyro X: "); Serial.print(g.gyro.x); Serial.print(" rad/s");
Serial.print("\tY: "); Serial.print(g.gyro.y); Serial.print(" rad/s");
Serial.print("\tZ: "); Serial.print(g.gyro.z); Serial.println(" rad/s");
Serial.println();
// notify changed value
if (deviceConnected) {
pSensorCharacteristic->setValue(String(value).c_str());
pSensorCharacteristic->setValue(test_str.c_str());
pSensorCharacteristic->notify();
value++;
//value++;
Serial.print("New value notified: ");
Serial.println(value);
delay(100); // bluetooth stack will go into congestion, if too many packets are sent, in 6 hours test i was able to go as low as 3ms
@ -119,4 +213,5 @@ void loop() {
oldDeviceConnected = deviceConnected;
Serial.println("Device Connected");
}
}
}

165
3 Sensor fusion/main.cpp Normal file
View file

@ -0,0 +1,165 @@
// Full orientation sensing using NXP/Madgwick/Mahony and a range of 9-DoF
// sensor sets.
// You *must* perform a magnetic calibration before this code will work.
//
// To view this data, use the Arduino Serial Monitor to watch the
// scrolling angles, or run the OrientationVisualiser example in Processing.
// Based on https://github.com/PaulStoffregen/NXPMotionSense with adjustments
// to Adafruit Unified Sensor interface
#include <Adafruit_Sensor_Calibration.h>
#include <Adafruit_AHRS.h>
Adafruit_Sensor *accelerometer, *gyroscope, *magnetometer;
#include <Adafruit_LSM9DS1.h>
Adafruit_LSM9DS1 lsm9ds = Adafruit_LSM9DS1();
bool init_sensors(void) {
if (!lsm9ds.begin()) {
return false;
}
accelerometer = &lsm9ds.getAccel();
gyroscope = &lsm9ds.getGyro();
magnetometer = &lsm9ds.getMag();
return true;
}
void setup_sensors(void) {
// set lowest range
#ifdef __LSM9DS0_H__
lsm9ds.setupAccel(lsm9ds.LSM9DS0_ACCELRANGE_2G);
lsm9ds.setupMag(lsm9ds.LSM9DS0_MAGGAIN_4GAUSS);
lsm9ds.setupGyro(lsm9ds.LSM9DS0_GYROSCALE_245DPS);
#else
lsm9ds.setupAccel(lsm9ds.LSM9DS1_ACCELRANGE_2G);
lsm9ds.setupMag(lsm9ds.LSM9DS1_MAGGAIN_4GAUSS);
lsm9ds.setupGyro(lsm9ds.LSM9DS1_GYROSCALE_245DPS);
#endif
}
// pick your filter! slower == better quality output
//Adafruit_NXPSensorFusion filter; // slowest
Adafruit_Madgwick filter; // faster than NXP
//Adafruit_Mahony filter; // fastest/smalleset
#if defined(ADAFRUIT_SENSOR_CALIBRATION_USE_EEPROM)
Adafruit_Sensor_Calibration_EEPROM cal;
#else
Adafruit_Sensor_Calibration_SDFat cal;
#endif
#define FILTER_UPDATE_RATE_HZ 100
#define PRINT_EVERY_N_UPDATES 10
//#define AHRS_DEBUG_OUTPUT
uint32_t timestamp;
void setup() {
Serial.begin(115200);
while (!Serial) yield();
if (!cal.begin()) {
Serial.println("Failed to initialize calibration helper");
} else if (! cal.loadCalibration()) {
Serial.println("No calibration loaded/found");
}
if (!init_sensors()) {
Serial.println("Failed to find sensors");
while (1) delay(10);
}
accelerometer->printSensorDetails();
gyroscope->printSensorDetails();
magnetometer->printSensorDetails();
setup_sensors();
filter.begin(FILTER_UPDATE_RATE_HZ);
timestamp = millis();
Wire.setClock(400000); // 400KHz
}
void loop() {
float roll, pitch, heading;
float gx, gy, gz;
static uint8_t counter = 0;
if ((millis() - timestamp) < (1000 / FILTER_UPDATE_RATE_HZ)) {
return;
}
timestamp = millis();
// Read the motion sensors
sensors_event_t accel, gyro, mag;
accelerometer->getEvent(&accel);
gyroscope->getEvent(&gyro);
magnetometer->getEvent(&mag);
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("I2C took "); Serial.print(millis()-timestamp); Serial.println(" ms");
#endif
cal.calibrate(mag);
cal.calibrate(accel);
cal.calibrate(gyro);
// Gyroscope needs to be converted from Rad/s to Degree/s
// the rest are not unit-important
gx = gyro.gyro.x * SENSORS_RADS_TO_DPS;
gy = gyro.gyro.y * SENSORS_RADS_TO_DPS;
gz = gyro.gyro.z * SENSORS_RADS_TO_DPS;
// Update the SensorFusion filter
filter.update(gx, gy, gz,
accel.acceleration.x, accel.acceleration.y, accel.acceleration.z,
mag.magnetic.x, mag.magnetic.y, mag.magnetic.z);
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("Update took "); Serial.print(millis()-timestamp); Serial.println(" ms");
#endif
// only print the calculated output once in a while
if (counter++ <= PRINT_EVERY_N_UPDATES) {
return;
}
// reset the counter
counter = 0;
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("Raw: ");
Serial.print(accel.acceleration.x, 4); Serial.print(", ");
Serial.print(accel.acceleration.y, 4); Serial.print(", ");
Serial.print(accel.acceleration.z, 4); Serial.print(", ");
Serial.print(gx, 4); Serial.print(", ");
Serial.print(gy, 4); Serial.print(", ");
Serial.print(gz, 4); Serial.print(", ");
Serial.print(mag.magnetic.x, 4); Serial.print(", ");
Serial.print(mag.magnetic.y, 4); Serial.print(", ");
Serial.print(mag.magnetic.z, 4); Serial.println("");
#endif
// print the heading, pitch and roll
roll = filter.getRoll();
pitch = filter.getPitch();
heading = filter.getYaw();
Serial.print("Orientation: ");
Serial.print(heading);
Serial.print(", ");
Serial.print(pitch);
Serial.print(", ");
Serial.println(roll);
float qw, qx, qy, qz;
filter.getQuaternion(&qw, &qx, &qy, &qz);
Serial.print("Quaternion: ");
Serial.print(qw, 4);
Serial.print(", ");
Serial.print(qx, 4);
Serial.print(", ");
Serial.print(qy, 4);
Serial.print(", ");
Serial.println(qz, 4);
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("Took "); Serial.print(millis()-timestamp); Serial.println(" ms");
#endif
}

View file

@ -16,4 +16,6 @@ board_build.f_cpu = 240000000L
upload_protocol = esptool
framework = arduino
monitor_speed = 115200
lib_deps = adafruit/Adafruit LSM9DS1 Library@^2.2.1
lib_deps =
adafruit/Adafruit LSM9DS1 Library@^2.2.1
adafruit/Adafruit AHRS@^2.3.6

View file

@ -1,217 +1,165 @@
#include <Arduino.h>
#include <Wire.h>
#include <SPI.h>
// Full orientation sensing using NXP/Madgwick/Mahony and a range of 9-DoF
// sensor sets.
// You *must* perform a magnetic calibration before this code will work.
//
// To view this data, use the Arduino Serial Monitor to watch the
// scrolling angles, or run the OrientationVisualiser example in Processing.
// Based on https://github.com/PaulStoffregen/NXPMotionSense with adjustments
// to Adafruit Unified Sensor interface
#include <Adafruit_Sensor_Calibration.h>
#include <Adafruit_AHRS.h>
Adafruit_Sensor *accelerometer, *gyroscope, *magnetometer;
#include <Adafruit_LSM9DS1.h>
#include <Adafruit_Sensor.h> // not used in this demo but required!
#include <BLEDevice.h>
#include <BLEServer.h>
#include <BLEUtils.h>
#include <BLE2902.h>
Adafruit_LSM9DS1 lsm9ds = Adafruit_LSM9DS1();
bool init_sensors(void) {
if (!lsm9ds.begin()) {
return false;
}
accelerometer = &lsm9ds.getAccel();
gyroscope = &lsm9ds.getGyro();
magnetometer = &lsm9ds.getMag();
// This part is taken from
Adafruit_LSM9DS1 lsm = Adafruit_LSM9DS1();
#define LSM9DS1_SCK A5
#define LSM9DS1_MISO 12
#define LSM9DS1_MOSI A4
#define LSM9DS1_XGCS 6
#define LSM9DS1_MCS 5
// BLE part
BLEServer* pServer = NULL;
BLECharacteristic* pSensorCharacteristic = NULL;
BLECharacteristic* pLedCharacteristic = NULL;
bool deviceConnected = false;
bool oldDeviceConnected = false;
uint32_t value = 0;
const int ledPin = 2; //This is the internal LED; used to demonstrate bidirectional communication
#define SERVICE_UUID "19b10000-e8f2-537e-4f6c-d104768a1214"
#define SENSOR_CHARACTERISTIC_UUID "19b10001-e8f2-537e-4f6c-d104768a1214"
#define LED_CHARACTERISTIC_UUID "19b10002-e8f2-537e-4f6c-d104768a1214"
// Will need to provide a more detailed description in your bachelor thesis, but the UUIDs
// generally describe what you use a feature for - e.g. weather data collection, computer mouse etc.
class MyServerCallbacks: public BLEServerCallbacks {
void onConnect(BLEServer* pServer) {
deviceConnected = true;
};
void onDisconnect(BLEServer* pServer) {
deviceConnected = false;
}
};
class MyCharacteristicCallbacks : public BLECharacteristicCallbacks {
void onWrite(BLECharacteristic* pLedCharacteristic) {
std::string value = pLedCharacteristic->getValue();
if (value.length() > 0) {
Serial.print("Characteristic event, written: ");
Serial.println(static_cast<int>(value[0])); // Print the integer value
int receivedValue = static_cast<int>(value[0]);
if (receivedValue == 1) {
digitalWrite(ledPin, HIGH);
} else {
digitalWrite(ledPin, LOW);
}
}
}
};
void setupSensor()
{
// 1.) Set the accelerometer range
lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_2G, lsm.LSM9DS1_ACCELDATARATE_10HZ);
//lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_4G, lsm.LSM9DS1_ACCELDATARATE_119HZ);
//lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_8G, lsm.LSM9DS1_ACCELDATARATE_476HZ);
//lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_16G, lsm.LSM9DS1_ACCELDATARATE_952HZ);
// 2.) Set the magnetometer sensitivity
lsm.setupMag(lsm.LSM9DS1_MAGGAIN_4GAUSS);
//lsm.setupMag(lsm.LSM9DS1_MAGGAIN_8GAUSS);
//lsm.setupMag(lsm.LSM9DS1_MAGGAIN_12GAUSS);
//lsm.setupMag(lsm.LSM9DS1_MAGGAIN_16GAUSS);
// 3.) Setup the gyroscope
lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
//lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_500DPS);
//lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_2000DPS);
return true;
}
void setup_sensors(void) {
// set lowest range
#ifdef __LSM9DS0_H__
lsm9ds.setupAccel(lsm9ds.LSM9DS0_ACCELRANGE_2G);
lsm9ds.setupMag(lsm9ds.LSM9DS0_MAGGAIN_4GAUSS);
lsm9ds.setupGyro(lsm9ds.LSM9DS0_GYROSCALE_245DPS);
#else
lsm9ds.setupAccel(lsm9ds.LSM9DS1_ACCELRANGE_2G);
lsm9ds.setupMag(lsm9ds.LSM9DS1_MAGGAIN_4GAUSS);
lsm9ds.setupGyro(lsm9ds.LSM9DS1_GYROSCALE_245DPS);
#endif
}
// pick your filter! slower == better quality output
//Adafruit_NXPSensorFusion filter; // slowest
Adafruit_Madgwick filter; // faster than NXP
//Adafruit_Mahony filter; // fastest/smalleset
void setup()
{
// General settings
#if defined(ADAFRUIT_SENSOR_CALIBRATION_USE_EEPROM)
Adafruit_Sensor_Calibration_EEPROM cal;
#else
Adafruit_Sensor_Calibration_SDFat cal;
#endif
#define FILTER_UPDATE_RATE_HZ 100
#define PRINT_EVERY_N_UPDATES 10
//#define AHRS_DEBUG_OUTPUT
uint32_t timestamp;
void setup() {
Serial.begin(115200);
pinMode(ledPin, OUTPUT);
while (!Serial) yield();
if (!cal.begin()) {
Serial.println("Failed to initialize calibration helper");
} else if (! cal.loadCalibration()) {
Serial.println("No calibration loaded/found");
}
// LSM9DS1 Setup
while (!Serial) {
delay(1); // will pause Zero, Leonardo, etc until serial console opens
if (!init_sensors()) {
Serial.println("Failed to find sensors");
while (1) delay(10);
}
Serial.println("LSM9DS1 data read demo");
// Try to initialise and warn if we couldn't detect the chip
if (!lsm.begin())
{
Serial.println("Oops ... unable to initialize the LSM9DS1. Check your wiring!");
while (1);
}
Serial.println("Found LSM9DS1 9DOF");
accelerometer->printSensorDetails();
gyroscope->printSensorDetails();
magnetometer->printSensorDetails();
// helper to just set the default scaling we want, see above!
setupSensor();
setup_sensors();
filter.begin(FILTER_UPDATE_RATE_HZ);
timestamp = millis();
// Bluetooth part
// Create the BLE Device
BLEDevice::init("ESP32");
// Create the BLE Server
pServer = BLEDevice::createServer();
pServer->setCallbacks(new MyServerCallbacks());
// Create the BLE Service
BLEService *pService = pServer->createService(SERVICE_UUID);
// Create a BLE Characteristic
pSensorCharacteristic = pService->createCharacteristic(
SENSOR_CHARACTERISTIC_UUID,
BLECharacteristic::PROPERTY_READ |
BLECharacteristic::PROPERTY_WRITE |
BLECharacteristic::PROPERTY_NOTIFY |
BLECharacteristic::PROPERTY_INDICATE
);
// Create the ON button Characteristic
pLedCharacteristic = pService->createCharacteristic(
LED_CHARACTERISTIC_UUID,
BLECharacteristic::PROPERTY_WRITE
);
// Register the callback for the ON button characteristic
pLedCharacteristic->setCallbacks(new MyCharacteristicCallbacks());
// https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
// Create a BLE Descriptor
pSensorCharacteristic->addDescriptor(new BLE2902());
pLedCharacteristic->addDescriptor(new BLE2902());
// Start the service
pService->start();
// Start advertising
BLEAdvertising *pAdvertising = BLEDevice::getAdvertising();
pAdvertising->addServiceUUID(SERVICE_UUID);
pAdvertising->setScanResponse(false);
pAdvertising->setMinPreferred(0x0); // set value to 0x00 to not advertise this parameter
BLEDevice::startAdvertising();
Serial.println("Waiting a client connection to notify...");
Wire.setClock(400000); // 400KHz
}
void loop()
{
lsm.read(); /* ask it to read in the data */
/* Get a new sensor event */
sensors_event_t a, m, g, temp;
void loop() {
float roll, pitch, heading;
float gx, gy, gz;
static uint8_t counter = 0;
lsm.getEvent(&a, &m, &g, &temp);
if ((millis() - timestamp) < (1000 / FILTER_UPDATE_RATE_HZ)) {
return;
}
timestamp = millis();
// Read the motion sensors
sensors_event_t accel, gyro, mag;
accelerometer->getEvent(&accel);
gyroscope->getEvent(&gyro);
magnetometer->getEvent(&mag);
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("I2C took "); Serial.print(millis()-timestamp); Serial.println(" ms");
#endif
String test_str = "Accel X: " + String(a.acceleration.x) + " m/s^2" +
"\tY: " + String(a.acceleration.y) + " m/s^2 " +
"\tZ: " + String(a.acceleration.z) + " m/s^2\n" +
"Mag X: " + String(m.magnetic.x) + " uT" +
"\tY: " + String(m.magnetic.y) + " uT" +
"\tZ: " + String(m.magnetic.z) + " uT\n" +
"Gyro X: " + String(g.gyro.x) + " rad/s" +
"\tY: " + String(g.gyro.y) + " rad/s" +
"\tZ: " + String(g.gyro.z) + " rad/s\n";
cal.calibrate(mag);
cal.calibrate(accel);
cal.calibrate(gyro);
// Gyroscope needs to be converted from Rad/s to Degree/s
// the rest are not unit-important
gx = gyro.gyro.x * SENSORS_RADS_TO_DPS;
gy = gyro.gyro.y * SENSORS_RADS_TO_DPS;
gz = gyro.gyro.z * SENSORS_RADS_TO_DPS;
Serial.print("Accel X: "); Serial.print(a.acceleration.x); Serial.print(" m/s^2");
Serial.print("\tY: "); Serial.print(a.acceleration.y); Serial.print(" m/s^2 ");
Serial.print("\tZ: "); Serial.print(a.acceleration.z); Serial.println(" m/s^2 ");
// Update the SensorFusion filter
filter.update(gx, gy, gz,
accel.acceleration.x, accel.acceleration.y, accel.acceleration.z,
mag.magnetic.x, mag.magnetic.y, mag.magnetic.z);
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("Update took "); Serial.print(millis()-timestamp); Serial.println(" ms");
#endif
Serial.print("Mag X: "); Serial.print(m.magnetic.x); Serial.print(" uT");
Serial.print("\tY: "); Serial.print(m.magnetic.y); Serial.print(" uT");
Serial.print("\tZ: "); Serial.print(m.magnetic.z); Serial.println(" uT");
// only print the calculated output once in a while
if (counter++ <= PRINT_EVERY_N_UPDATES) {
return;
}
// reset the counter
counter = 0;
Serial.print("Gyro X: "); Serial.print(g.gyro.x); Serial.print(" rad/s");
Serial.print("\tY: "); Serial.print(g.gyro.y); Serial.print(" rad/s");
Serial.print("\tZ: "); Serial.print(g.gyro.z); Serial.println(" rad/s");
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("Raw: ");
Serial.print(accel.acceleration.x, 4); Serial.print(", ");
Serial.print(accel.acceleration.y, 4); Serial.print(", ");
Serial.print(accel.acceleration.z, 4); Serial.print(", ");
Serial.print(gx, 4); Serial.print(", ");
Serial.print(gy, 4); Serial.print(", ");
Serial.print(gz, 4); Serial.print(", ");
Serial.print(mag.magnetic.x, 4); Serial.print(", ");
Serial.print(mag.magnetic.y, 4); Serial.print(", ");
Serial.print(mag.magnetic.z, 4); Serial.println("");
#endif
Serial.println();
// notify changed value
if (deviceConnected) {
pSensorCharacteristic->setValue(test_str.c_str());
pSensorCharacteristic->notify();
//value++;
Serial.print("New value notified: ");
Serial.println(value);
delay(100); // bluetooth stack will go into congestion, if too many packets are sent, in 6 hours test i was able to go as low as 3ms
}
// disconnecting
if (!deviceConnected && oldDeviceConnected) {
Serial.println("Device disconnected.");
delay(500); // give the bluetooth stack the chance to get things ready
pServer->startAdvertising(); // restart advertising
Serial.println("Start advertising");
oldDeviceConnected = deviceConnected;
}
// connecting
if (deviceConnected && !oldDeviceConnected) {
// do stuff here on connecting
oldDeviceConnected = deviceConnected;
Serial.println("Device Connected");
}
// print the heading, pitch and roll
roll = filter.getRoll();
pitch = filter.getPitch();
heading = filter.getYaw();
Serial.print("Orientation: ");
Serial.print(heading);
Serial.print(", ");
Serial.print(pitch);
Serial.print(", ");
Serial.println(roll);
float qw, qx, qy, qz;
filter.getQuaternion(&qw, &qx, &qy, &qz);
Serial.print("Quaternion: ");
Serial.print(qw, 4);
Serial.print(", ");
Serial.print(qx, 4);
Serial.print(", ");
Serial.print(qy, 4);
Serial.print(", ");
Serial.println(qz, 4);
#if defined(AHRS_DEBUG_OUTPUT)
Serial.print("Took "); Serial.print(millis()-timestamp); Serial.println(" ms");
#endif
}