Importing memory cache pool changes from nJScript.

This commit is contained in:
Igor Sysoev 2017-03-14 19:02:30 +03:00
parent aa047be6b9
commit 979108f0ef
3 changed files with 198 additions and 131 deletions

View file

@ -13,114 +13,127 @@
* size. Page size must be a power of 2. A page can be used entirely or
* can be divided on chunks of equal size. Chunk size must be a power of 2.
* A cluster can contains pages with different chunk sizes. Cluster size
* must be multiple of page size and may be not a power of 2. Allocations
* must be a multiple of page size and may be not a power of 2. Allocations
* greater than page are allocated outside clusters. Start addresses and
* sizes of clusters and large allocations are stored in rbtree to find
* them on free operations. The rbtree nodes are sorted by start addresses.
* sizes of the clusters and large allocations are stored in rbtree blocks
* to find them on free operations. The rbtree nodes are sorted by start
* addresses.
*/
typedef struct nxt_mem_cache_page_s nxt_mem_cache_page_t;
struct nxt_mem_cache_page_s {
/* Chunk bitmap. There can be no more than 32 chunks in a page. */
uint8_t map[4];
/* Number of free chunks of a chunked page. */
uint8_t chunks;
typedef struct {
/*
* Used to link pages with free chunks in pool chunk slot list
* or to link free pages in clusters.
*/
nxt_queue_link_t link;
/*
* Size of chunks or page shifted by pool->chunk_size_shift.
* Zero means that page is free.
*/
uint8_t size;
uint8_t size;
/*
* Page number in page cluster.
* There can be no more than 65536 pages in a cluster.
* There can be no more than 256 pages in a cluster.
*/
uint16_t number;
uint8_t number;
/* Number of free chunks of a chunked page. */
uint8_t chunks;
uint8_t _unused;
/* Chunk bitmap. There can be no more than 32 chunks in a page. */
uint8_t map[4];
} nxt_mem_cache_page_t;
typedef enum {
/* Block of cluster. The block is allocated apart of the cluster. */
NXT_MEM_CACHE_CLUSTER_BLOCK = 0,
/*
* Used to link pages with free chunks in pool chunk slot list
* or to link free pages in clusters.
* Block of large allocation.
* The block is allocated apart of the allocation.
*/
nxt_queue_link_t link;
};
NXT_MEM_CACHE_DISCRETE_BLOCK,
/*
* Block of large allocation.
* The block is allocated just after of the allocation.
*/
NXT_MEM_CACHE_EMBEDDED_BLOCK,
} nxt_mem_cache_block_type_t;
typedef struct {
NXT_RBTREE_NODE (node);
uint8_t type;
uint32_t size;
NXT_RBTREE_NODE (node);
nxt_mem_cache_block_type_t type:8;
u_char *start;
nxt_mem_cache_page_t pages[];
/* Block size must be less than 4G. */
uint32_t size;
u_char *start;
nxt_mem_cache_page_t pages[];
} nxt_mem_cache_block_t;
typedef struct {
nxt_queue_t pages;
nxt_queue_t pages;
/* Size of page chunks. */
#if (NXT_64BIT)
uint32_t size;
uint32_t chunks;
uint32_t size;
#else
uint16_t size;
uint16_t chunks;
uint16_t size;
#endif
/* Maximum number of free chunks in chunked page. */
uint8_t chunks;
} nxt_mem_cache_slot_t;
struct nxt_mem_cache_pool_s {
/* rbtree of nxt_mem_cache_block_t. */
nxt_rbtree_t pages;
nxt_rbtree_t blocks;
nxt_queue_t free_pages;
nxt_queue_t free_pages;
uint8_t chunk_size_shift;
uint8_t page_size_shift;
uint32_t page_size;
uint32_t page_alignment;
uint32_t cluster_size;
uint8_t chunk_size_shift;
uint8_t page_size_shift;
uint32_t page_size;
uint32_t page_alignment;
uint32_t cluster_size;
nxt_mem_cache_slot_t slots[];
nxt_mem_cache_slot_t slots[];
};
/* A cluster cache block. */
#define NXT_MEM_CACHE_CLUSTER_BLOCK 0
/* A discrete cache block of large allocation. */
#define NXT_MEM_CACHE_DISCRETE_BLOCK 1
/*
* An embedded cache block allocated together with large allocation
* just after the allocation.
*/
#define NXT_MEM_CACHE_EMBEDDED_BLOCK 2
#define \
nxt_mem_cache_chunk_is_free(map, chunk) \
#define nxt_mem_cache_chunk_is_free(map, chunk) \
((map[chunk / 8] & (0x80 >> (chunk & 7))) == 0)
#define \
nxt_mem_cache_chunk_set_free(map, chunk) \
#define nxt_mem_cache_chunk_set_free(map, chunk) \
map[chunk / 8] &= ~(0x80 >> (chunk & 7))
#define \
nxt_mem_cache_free_junk(p, size) \
nxt_memset((p), 0x5A, size)
#define nxt_mem_cache_free_junk(p, size) \
memset((p), 0x5A, size)
#define nxt_is_power_of_two(value) \
((((value) - 1) & (value)) == 0)
static nxt_uint_t nxt_mem_cache_shift(nxt_uint_t n);
#if !(NXT_DEBUG_MEMORY)
static void *nxt_mem_cache_alloc_small(nxt_mem_cache_pool_t *pool, size_t size);
static nxt_uint_t nxt_mem_cache_alloc_chunk(u_char *map, nxt_uint_t size);
static nxt_mem_cache_page_t *
nxt_mem_cache_alloc_page(nxt_mem_cache_pool_t *pool);
static nxt_mem_cache_block_t *
nxt_mem_cache_alloc_cluster(nxt_mem_cache_pool_t *pool);
#endif
static void *nxt_mem_cache_alloc_large(nxt_mem_cache_pool_t *pool,
size_t alignment, size_t size);
static intptr_t nxt_mem_cache_rbtree_compare(nxt_rbtree_node_t *node1,
@ -137,9 +150,9 @@ nxt_mem_cache_pool_create(size_t cluster_size, size_t page_alignment,
{
/* Alignment and sizes must be a power of 2. */
if (nxt_slow_path((page_alignment & (page_alignment - 1)) != 0
|| (page_size & (page_size - 1)) != 0
|| (min_chunk_size & (min_chunk_size - 1)) != 0))
if (nxt_slow_path(!nxt_is_power_of_two(page_alignment)
|| !nxt_is_power_of_two(page_size)
|| !nxt_is_power_of_two(min_chunk_size)))
{
return NULL;
}
@ -147,11 +160,12 @@ nxt_mem_cache_pool_create(size_t cluster_size, size_t page_alignment,
page_alignment = nxt_max(page_alignment, NXT_MAX_ALIGNMENT);
if (nxt_slow_path(page_size < 64
|| page_size < page_alignment
|| page_size < min_chunk_size
|| min_chunk_size * 32 < page_size
|| cluster_size < page_size
|| cluster_size % page_size != 0))
|| page_size < page_alignment
|| page_size < min_chunk_size
|| min_chunk_size * 32 < page_size
|| cluster_size < page_size
|| cluster_size / page_size > 256
|| cluster_size % page_size != 0))
{
return NULL;
}
@ -163,7 +177,7 @@ nxt_mem_cache_pool_create(size_t cluster_size, size_t page_alignment,
nxt_mem_cache_pool_t *
nxt_mem_cache_pool_fast_create(size_t cluster_size, size_t page_alignment,
size_t page_size, size_t min_chunk_size)
size_t page_size, size_t min_chunk_size)
{
nxt_uint_t slots, chunk_size;
nxt_mem_cache_slot_t *slot;
@ -181,7 +195,6 @@ nxt_mem_cache_pool_fast_create(size_t cluster_size, size_t page_alignment,
+ slots * sizeof(nxt_mem_cache_slot_t));
if (nxt_fast_path(pool != NULL)) {
pool->page_size = page_size;
pool->page_alignment = nxt_max(page_alignment, NXT_MAX_ALIGNMENT);
pool->cluster_size = cluster_size;
@ -202,7 +215,7 @@ nxt_mem_cache_pool_fast_create(size_t cluster_size, size_t page_alignment,
pool->chunk_size_shift = nxt_mem_cache_shift(min_chunk_size);
pool->page_size_shift = nxt_mem_cache_shift(page_size);
nxt_rbtree_init(&pool->pages, nxt_mem_cache_rbtree_compare);
nxt_rbtree_init(&pool->blocks, nxt_mem_cache_rbtree_compare);
nxt_queue_init(&pool->free_pages);
}
@ -231,7 +244,7 @@ nxt_mem_cache_shift(nxt_uint_t n)
nxt_bool_t
nxt_mem_cache_pool_is_empty(nxt_mem_cache_pool_t *pool)
{
return (nxt_rbtree_is_empty(&pool->pages)
return (nxt_rbtree_is_empty(&pool->blocks)
&& nxt_queue_is_empty(&pool->free_pages));
}
@ -243,16 +256,13 @@ nxt_mem_cache_pool_destroy(nxt_mem_cache_pool_t *pool)
nxt_rbtree_node_t *node, *next;
nxt_mem_cache_block_t *block;
for (node = nxt_rbtree_min(&pool->pages);
nxt_rbtree_is_there_successor(&pool->pages, node);
node = next)
{
next = nxt_rbtree_node_successor(&pool->pages, node);
next = nxt_rbtree_root(&pool->blocks);
while (next != nxt_rbtree_sentinel(&pool->blocks)) {
node = nxt_rbtree_destroy_next(&pool->blocks, &next);
block = (nxt_mem_cache_block_t *) node;
nxt_rbtree_delete(&pool->pages, &block->node);
p = block->start;
if (block->type != NXT_MEM_CACHE_EMBEDDED_BLOCK) {
@ -266,28 +276,19 @@ nxt_mem_cache_pool_destroy(nxt_mem_cache_pool_t *pool)
}
nxt_inline u_char *
nxt_mem_cache_page_addr(nxt_mem_cache_pool_t *pool, nxt_mem_cache_page_t *page)
{
nxt_mem_cache_block_t *block;
block = (nxt_mem_cache_block_t *)
((u_char *) page - page->number * sizeof(nxt_mem_cache_page_t)
- offsetof(nxt_mem_cache_block_t, pages));
return block->start + (page->number << pool->page_size_shift);
}
void *
nxt_mem_cache_alloc(nxt_mem_cache_pool_t *pool, size_t size)
{
nxt_thread_log_debug("mem cache alloc: %uz", size);
// nxt_debug(task, "mem cache alloc: %zd", size);
#if !(NXT_DEBUG_MEMORY)
if (size <= pool->page_size) {
return nxt_mem_cache_alloc_small(pool, size);
}
#endif
return nxt_mem_cache_alloc_large(pool, NXT_MAX_ALIGNMENT, size);
}
@ -300,7 +301,7 @@ nxt_mem_cache_zalloc(nxt_mem_cache_pool_t *pool, size_t size)
p = nxt_mem_cache_alloc(pool, size);
if (nxt_fast_path(p != NULL)) {
nxt_memzero(p, size);
memset(p, 0, size);
}
return p;
@ -310,11 +311,13 @@ nxt_mem_cache_zalloc(nxt_mem_cache_pool_t *pool, size_t size)
void *
nxt_mem_cache_align(nxt_mem_cache_pool_t *pool, size_t alignment, size_t size)
{
nxt_thread_log_debug("mem cache align: @%uz:%uz", alignment, size);
// nxt_debug(task, "mem cache align: @%zd:%zd", alignment, size);
/* Alignment must be a power of 2. */
if (nxt_fast_path((alignment - 1) & alignment) == 0) {
if (nxt_fast_path(nxt_is_power_of_two(alignment))) {
#if !(NXT_DEBUG_MEMORY)
if (size <= pool->page_size && alignment <= pool->page_alignment) {
size = nxt_max(size, alignment);
@ -324,6 +327,8 @@ nxt_mem_cache_align(nxt_mem_cache_pool_t *pool, size_t alignment, size_t size)
}
}
#endif
return nxt_mem_cache_alloc_large(pool, alignment, size);
}
@ -339,13 +344,28 @@ nxt_mem_cache_zalign(nxt_mem_cache_pool_t *pool, size_t alignment, size_t size)
p = nxt_mem_cache_align(pool, alignment, size);
if (nxt_fast_path(p != NULL)) {
nxt_memzero(p, size);
memset(p, 0, size);
}
return p;
}
#if !(NXT_DEBUG_MEMORY)
nxt_inline u_char *
nxt_mem_cache_page_addr(nxt_mem_cache_pool_t *pool, nxt_mem_cache_page_t *page)
{
nxt_mem_cache_block_t *block;
block = (nxt_mem_cache_block_t *)
((u_char *) page - page->number * sizeof(nxt_mem_cache_page_t)
- offsetof(nxt_mem_cache_block_t, pages));
return block->start + (page->number << pool->page_size_shift);
}
static void *
nxt_mem_cache_alloc_small(nxt_mem_cache_pool_t *pool, size_t size)
{
@ -416,7 +436,7 @@ nxt_mem_cache_alloc_small(nxt_mem_cache_pool_t *pool, size_t size)
#endif
}
nxt_thread_log_debug("mem cache chunk:%uz alloc: %p", size, p);
// nxt_debug(task, "mem cache chunk:%uz alloc: %p", size, p);
return p;
}
@ -519,11 +539,13 @@ nxt_mem_cache_alloc_cluster(nxt_mem_cache_pool_t *pool)
&cluster->pages[n].link);
}
nxt_rbtree_insert(&pool->pages, &cluster->node);
nxt_rbtree_insert(&pool->blocks, &cluster->node);
return cluster;
}
#endif
static void *
nxt_mem_cache_alloc_large(nxt_mem_cache_pool_t *pool, size_t alignment,
@ -534,39 +556,43 @@ nxt_mem_cache_alloc_large(nxt_mem_cache_pool_t *pool, size_t alignment,
uint8_t type;
nxt_mem_cache_block_t *block;
if (nxt_slow_path((size - 1) & size) != 0) {
/* Allocation must be less than 4G. */
if (nxt_slow_path(size >= 0xffffffff)) {
return NULL;
}
if (nxt_is_power_of_two(size)) {
block = nxt_malloc(sizeof(nxt_mem_cache_block_t));
if (nxt_slow_path(block == NULL)) {
return NULL;
}
p = nxt_memalign(alignment, size);
if (nxt_slow_path(p == NULL)) {
nxt_free(block);
return NULL;
}
type = NXT_MEM_CACHE_DISCRETE_BLOCK;
} else {
aligned_size = nxt_align_size(size, sizeof(uintptr_t));
p = nxt_memalign(alignment,
aligned_size + sizeof(nxt_mem_cache_block_t));
if (nxt_slow_path(p == NULL)) {
return NULL;
}
block = (nxt_mem_cache_block_t *) (p + aligned_size);
type = NXT_MEM_CACHE_EMBEDDED_BLOCK;
} else {
block = nxt_malloc(sizeof(nxt_mem_cache_block_t));
if (nxt_slow_path(block == NULL)) {
nxt_free(block);
return NULL;
}
p = nxt_memalign(alignment, size);
if (nxt_slow_path(p == NULL)) {
return NULL;
}
type = NXT_MEM_CACHE_DISCRETE_BLOCK;
}
block->type = type;
block->size = size;
block->start = p;
nxt_rbtree_insert(&pool->pages, &block->node);
nxt_rbtree_insert(&pool->blocks, &block->node);
return p;
}
@ -590,17 +616,21 @@ nxt_mem_cache_free(nxt_mem_cache_pool_t *pool, void *p)
const char *err;
nxt_mem_cache_block_t *block;
nxt_thread_log_debug("mem cache free %p", p);
// nxt_debug(task, "mem cache free %p", p);
block = nxt_mem_cache_find_block(&pool->pages, p);
block = nxt_mem_cache_find_block(&pool->blocks, p);
if (nxt_fast_path(block != NULL)) {
if (block->type == NXT_MEM_CACHE_CLUSTER_BLOCK) {
err = nxt_mem_cache_chunk_free(pool, block, p);
if (nxt_fast_path(err == NULL)) {
return;
}
} else if (nxt_fast_path(p == block->start)) {
nxt_rbtree_delete(&pool->pages, &block->node);
nxt_rbtree_delete(&pool->blocks, &block->node);
if (block->type == NXT_MEM_CACHE_DISCRETE_BLOCK) {
nxt_free(block);
@ -608,19 +638,17 @@ nxt_mem_cache_free(nxt_mem_cache_pool_t *pool, void *p)
nxt_free(p);
err = NULL;
return;
} else {
err = "pointer to wrong page";
err = "freed pointer points to middle of block: %p";
}
} else {
err = "pointer is out of pool";
err = "freed pointer is out of pool: %p";
}
if (nxt_slow_path(err != NULL)) {
nxt_thread_log_alert("nxt_mem_cache_pool_free(%p): %s", p, err);
}
// nxt_log(task, NXT_LOG_CRIT, err, p);
}
@ -668,7 +696,7 @@ nxt_mem_cache_chunk_free(nxt_mem_cache_pool_t *pool,
page = &cluster->pages[n];
if (page->size == 0) {
return "page is already free";
return "freed pointer points to already free page: %p";
}
size = page->size << pool->chunk_size_shift;
@ -679,11 +707,11 @@ nxt_mem_cache_chunk_free(nxt_mem_cache_pool_t *pool,
chunk = offset / size;
if (nxt_slow_path(offset != chunk * size)) {
return "pointer to wrong chunk";
return "freed pointer points to wrong chunk: %p";
}
if (nxt_slow_path(nxt_mem_cache_chunk_is_free(page->map, chunk))) {
return "chunk is already free";
return "freed pointer points to already free chunk: %p";
}
nxt_mem_cache_chunk_set_free(page->map, chunk);
@ -715,7 +743,7 @@ nxt_mem_cache_chunk_free(nxt_mem_cache_pool_t *pool,
}
} else if (nxt_slow_path(p != start)) {
return "invalid pointer to chunk";
return "invalid pointer to chunk: %p";
}
/* Add the free page to the pool's free pages tree. */
@ -750,7 +778,7 @@ nxt_mem_cache_chunk_free(nxt_mem_cache_pool_t *pool,
n--;
} while (n != 0);
nxt_rbtree_delete(&pool->pages, &cluster->node);
nxt_rbtree_delete(&pool->blocks, &cluster->node);
p = cluster->start;
@ -759,9 +787,3 @@ nxt_mem_cache_chunk_free(nxt_mem_cache_pool_t *pool,
return NULL;
}
const nxt_mem_proto_t nxt_mem_cache_proto = {
(nxt_mem_proto_alloc_t) nxt_mem_cache_alloc,
(nxt_mem_proto_free_t) nxt_mem_cache_free,
};

View file

@ -492,3 +492,37 @@ nxt_rbtree_parent_relink(nxt_rbtree_node_t *subst, nxt_rbtree_node_t *node)
link = (node == parent->left) ? &parent->left : &parent->right;
*link = subst;
}
nxt_rbtree_node_t *
nxt_rbtree_destroy_next(nxt_rbtree_t *tree, nxt_rbtree_node_t **next)
{
nxt_rbtree_node_t *node, *subst, *parent, *sentinel;
sentinel = nxt_rbtree_sentinel(tree);
/* Find the leftmost node. */
for (node = *next; node->left != sentinel; node = node->left);
/* Replace the leftmost node with its right child. */
subst = node->right;
parent = node->parent;
parent->left = subst;
subst->parent = parent;
/*
* The right child is used as the next start node. If the right child
* is the sentinel then parent of the leftmost node is used as the next
* start node. The parent of the root node is the sentinel so after
* the single root node will be replaced with the sentinel, the next
* start node will be equal to the sentinel and iteration will stop.
*/
if (subst == sentinel) {
subst = parent;
}
*next = subst;
return node;
}

View file

@ -116,5 +116,16 @@ NXT_EXPORT nxt_rbtree_node_t
nxt_rbtree_part_t *node);
NXT_EXPORT void nxt_rbtree_delete(nxt_rbtree_t *tree, nxt_rbtree_part_t *node);
/*
* nxt_rbtree_destroy_next() is iterator to use only while rbtree destruction.
* It deletes a node from rbtree and returns the node. The rbtree is not
* rebalanced after deletion. At the beginning the "next" parameter should
* be equal to rbtree root. The iterator should be called in loop until
* the "next" parameter will be equal to the rbtree sentinel. No other
* operations must be performed on the rbtree while destruction.
*/
NXT_EXPORT nxt_rbtree_node_t *nxt_rbtree_destroy_next(nxt_rbtree_t *tree,
nxt_rbtree_node_t **next);
#endif /* _NXT_RBTREE_H_INCLUDED_ */